Abstract:
Rank‐based cross‐covariance matrices, extending to the case of multivariate observed series the (univariate) rank autocorrelation coefficients introduced by Wald and Wolfowitz (1943), are considered. A permutational central limit theorem is established for the joint distribution of such matrices, under the null hypothesis of (multivariate) randomness as well as under contiguous alternatives of (multivariate) ARMA dependence. A rank‐based, permutationaily distribution‐free test of the portmanteau type is derived, and its asymptotic local power is investigated. Finally, a modified rank‐based version of Tiao and Box's model specification procedure is proposed, which is likely to be more reliable under non‐Gaussian conditions, and more robust against gross errors.